3.714 \(\int \frac{\sqrt{\sec (c+d x)}}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=49 \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{d (a+b)} \]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/((a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.130593, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3238, 3849, 2805} \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{d (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/((a + b)*d)

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{a+b \cos (c+d x)} \, dx &=\int \frac{\sec ^{\frac{3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx\\ &=\frac{2 \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{(a+b) d}\\ \end{align*}

Mathematica [A]  time = 0.291963, size = 63, normalized size = 1.29 \[ \frac{2 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) \left (\Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+F\left (\left .\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

(2*Cot[c + d*x]*(EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1] + EllipticPi[-(a/b), -ArcSin[Sqrt[Sec[c + d*x]]], -
1])*Sqrt[-Tan[c + d*x]^2])/(a*d)

________________________________________________________________________________________

Maple [B]  time = 2.789, size = 150, normalized size = 3.1 \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{ \left ( a-b \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a), x)